## The Best Restricted Area Technique for Computing the Convex Hull of a Finite Set of Points in $\mathbb{R}^n$

## P. T. An<sup>1</sup>, N. D. Hoang<sup>2</sup>, N. K. Linh<sup>3</sup>, and N. B. Hau<sup>4</sup>

**Abstract:** In this talk, we present an efficient algorithm for determining the convex hull of a finite set of points in  $\mathbb{R}^n$  space applying the best restricted area technique. This technique is inspired by the Method of Orienting Curves introduced in [1]. This method was used in [2] to improve the main step of the 3D Gift-wrapping algorithm and achieved good results.

The Gift-wrapping algorithm determines the convex hull  $\operatorname{conv}(P)$  of a finite set of points P. At the beginning it finds a first edge E of  $\operatorname{conv}(P)$ . The next step is to determine a facet F of  $\operatorname{conv}(P)$  through E. The algorithm then continues finding the facets of the convex hull containing the edges of F until all the points of the initial set are "packed". Thus the main task of the algorithm is to find a facet of  $\operatorname{conv}(P)$  through a given edge E. In this talk, the restricted area technique is proposed to improve this step. In each step of "packing", for each edge E, we find a point  $p \in P$  such that p and E together create a facet of  $\operatorname{conv}(P)$ . To reduce the number of computations, instead of performing on the original space, the authors in [2] performed on the set of P's projection onto a fixed coordinate hyperplane. To reduce more calculations, our technique is to project P onto each coordinate hyperplane and to select the best one according to a criterion called *the best restricted ratio*.

The best restricted area technique is integrated with the Gift-wrapping algorithm into a new algorithm. The numerical experiments on the sets of random points in spaces show that on average the new algorithm is 1.4 and 1.3 times faster than the original Gift-wrapping algorithm and the algorithm in [2], respectively.

## References

[1] H. X. Phu, Zur Lösung einer regulären Aufgabenklasse der optimalen Steuerung im Großen mittels Orientierungskurven, *Optimization*, 18, pp. 65–81 (1987).

[2] P.T. An and L. H. Trang, An efficient convex hull algorithm for finite point sets in 3D based on the Method of Orienting Curves, *Optimization*, 62, pp. 975–988 (2013).

<sup>&</sup>lt;sup>1</sup> Institute of Mathematics, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam thanhan@math.ac.vn

<sup>&</sup>lt;sup>2</sup> Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam hoangnamdung@hus.edu.vn

<sup>&</sup>lt;sup>3</sup> Viet Bac University, highway 1B, Dong Bam, Thainguyen, Vietnam nguyenkieulinhk4@gmail.com

 <sup>&</sup>lt;sup>4</sup> Institute of Natural Sciences Education, Vinh University
182 Le Duan Street, Vinh City, Vietnam, *buihau@yahoo.com*